ELMAGCO BRAKE PDF

In this drawing the magnet is drawn spaced apart from the sheet to reveal the vectors; in an eddy current brake the magnet is normally located as close to the sheet as possible. A circular or disk eddy current brake An eddy current brake consists of a conductive piece of metal, either a straight bar or a disk, which moves through the magnetic field of a magnet, either a permanent magnet or an electromagnet. When it moves past the stationary magnet , the magnet exerts a drag force on the metal which opposes its motion, due to circular electric currents called eddy currents induced in the metal by the magnetic field. Note that the conductive sheet is not made of ferromagnetic metal such as iron or steel; usually copper or aluminum are used, which are not attracted to a magnet. The brake does not work by the simple attraction of a ferromagnetic metal to the magnet. See the diagram at right.

Author:Akile Akinora
Country:Burundi
Language:English (Spanish)
Genre:Life
Published (Last):20 January 2004
Pages:167
PDF File Size:4.35 Mb
ePub File Size:18.61 Mb
ISBN:718-8-98491-965-3
Downloads:3437
Price:Free* [*Free Regsitration Required]
Uploader:Goltijora



Published on Feb 21, Abstract Many of the ordinary brakes, which are being used now days stop the vehicle by means of mechanical blocking. This causes skidding and wear and tear of the vehicle. And if the speed of the vehicle is very high, the brake cannot provide that much high braking force and it will cause problems. It is an abrasion-free method for braking of vehicles including trains.

It makes use of the opposing tendency of eddy current Eddy current is the swirling current produced in a conductor, which is subjected to a change in magnetic field. Because of the tendency of eddy currents to oppose, eddy currents cause energy to be lost. More accurately, eddy currents transform more useful forms of energy such as kinetic energy into heat, which is much less useful.

In many applications, the loss of useful energy is not particularly desirable. But there are some practical applications. Such an application is the eddy current brake. According to this law, whenever a conductor cuts magnetic lines of forces, an emf is induced in the conductor, the magnitude of which is proportional to the strength of magnetic field and the speed of the conductor.

If the conductor is a disc, there will be circulatory currents i. Essentially the eddy current brake consists of two parts, a stationary magnetic field system and a solid rotating part, which include a metal disc.

During braking, the metal disc is exposed to a magnetic field from an electromagnet, generating eddy currents in the disc. The magnetic interaction between the applied field and the eddy currents slow down the rotating disc.

Thus the wheels of the vehicle also slow down since the wheels are directly coupled to the disc of the eddy current brake, thus producing smooth stopping motion. Working Essentially an eddy current brake consists of two members, a stationary magnetic field system and a solid rotary member, generally of mild steel, which is sometimes referred to as the secondary because the eddy currents are induced in it.

Consequently there is no wear as in friction brake. Stator consists of pole core, pole shoe, and field winding. The field winding is wounded on the pole core. Pole core and pole shoes are made of east steel laminations and fixed to the state of frames by means of screw or bolts. Copper and aluminium is used for winding material the arrangement is shown in fig. This system consists of two parts. Stator 2. Rotor When the vehicle is moving, the rotor disc of eddy current brake which is coupled to the wheels of the vehicle rotates, in close proximity to stationary magnetic poles.

When we want to brake the vehicle, a control switch is put on which is placed on the steering column in a position for easy operation. When the control switch is operated, current flows from a battery to the field winding, thus energizing the magnet. Then the rotating disc will cut the magnetic field. When the disc cuts the magnetic field, flux changes occur in the disc which is proportional to the strength of the magnetic field.

The current will flow back to the zero field areas of the metal plate and thus create a closed current loop like a whirl or eddy. A flow of current always means there is a magnetic field as well.

Thus instead of mechanical friction, a magnetic friction is created. In consequence, the disc will experience a "drag" or the braking effect, and thus the disc stops rotation. The wheels of the vehicle, which is directly coupled to the disc, also stop rotation.

Faster the wheels are spinning, stronger the effect, meaning that as the vehicle slows, the braking force is reduced producing a smooth stopping action. The control switch can be set at different positions for controlling the excitation current to several set values in order to regulate the magnetic flux and consequently the magnitude of braking force. So the control switch is set at the lowest position so that a low current will be supplied to the field winding.

Then the magnetic field produced will be of low strength, so that a required low braking force is produced. Next More Seminar Topics: Are you interested in this topic. Then mail to us immediately to get the full report.

MANFROTTO 055XPROB MANUAL PDF

Eddy current brake

.

70-562 MCTS PDF

Elmagco 7838W Brake Assembly

.

Related Articles